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SUMMARY

Computational fluid dynamics has been developed to the stage where it has become an

indispensable part of aerospace research and design. In view of advances made in aerospace

applications, the computational approach can be used for biofluid mechanics research. In

the present paper, several flow simulation methods developed for aerospace problems are

briefly discussed for potential applications to biofluids, especially to blood flow analysis.

INTRODUCTION

To date major advances in computational fluid dynamics (CFD) have been made in

aerospace engineering. With the advent of supercomputers as well as the development of

fast algorithms, computational flow simulations have become a practical means for

aerospace designs. Therefore, it will be of considerable benefit to medical researchers to

extend this CFD technology to biofluid analysis. One of the important areas of biofluid me-

chanics deals with blood flow, such as heart and blood vessel problems, which is relevant to

cardiovascular diseases and their treatment. Understanding the flow phenomena by numer-

ical simulations will be of significant value toward finding treatments for these problems.

Therefore, the potential payoff to human laealth will be tremendous.

Blood flow is very complicated in many respects: The fluid may exhibit significant

non-Newtonian characteristics locally and the geometry is usually very complicated. For

instance, the human aorta has large curvatures combined with very irregular lumen cross

sections and the walls are elastic and change shape (about a 10% increase in diameter during

the systole). In an artificial organ, as red blood cells go through high-shear turbulence
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regions, they may bedamaged;the downstreamregion of an artificial heartvalve is an
example. The flow is unsteady,possiblyperiodic,and very viscousandincompressible.
Thisproblemisverymuchinterdisciplinaryandanattemptfor acompletesimulationwould
beavery formidabletask.However,ananalysisbasedon a simplifiedmodelmayprovide
muchneededphysicalinsight into thebloodflow analysis.Foramorecomprehensivestudy
onblood flow, a largenumberof publicationsareavailable(refs. 1-10)andis notreviewed
here.

In therecentpast,viscousincompressibleflow solvershavebeendevelopedatNASA
Ames ResearchCenter. This research was motivated from realistic needs for
three-dimensionalsimulationsof aerospaceapplications(refs. 11-14). Naturally,compu-
tationalefficiencyhasbeenof primary importancein additionto accuracyandrobustness.
The formulation is basedon a Newtonianfluid assumption.However,sincethe govern-
ing equationsaresolvedin ageneralizedcoordinatesystem,viscosityisallowedto vary in
spaceand time. Theseflow solverscanbeappliedto currentblood flow problems,such
asflow throughanartificial heart(ref. 9), pulsatileflow in arterialbifurcations(ref. 6) and
flow in aneurysms(ref. 7). A full simulationof viscoelasticflow isverydifficult becauseof
thenonlinearitiesof thefluid (ref. 5). However,asafirst steptowardfull simulations,non-
Newtonianeffectsof theblood flow canbesimplified by a constitutivemodel for viscous
stresses.

In thepresentpaper,viscousincompressibleflow CFDmethodswill bediscussedfor a
potentialextensionto bloodflowproblems.Thefocusis onflow solversrecentlydeveloped
by theauthors,andon relevantfeaturespertainingto bloodflow simulations.

FORMULATION

Unsteady, three-dimensional, viscous, incompressible flow with constant density is

governed by the following Navier-Stokes equations:

continuity equation

Ou---2= o (1)
Oxi

momentum equation

tgui Ouiuj Op tg"rq
-- + -- = ----+ -- (2)
0t a:rj ax_ 0zj

where, t is the time, zi the Cartesian coordinates, ui the corresponding velocity components,

p the pressure, and _j the viscous stress tensor. Here, all variables are nondimensionalized

by a reference velocity and length scale.
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To close the governing equations (1) and (2), the viscous stress tensor is modeled by a

constitutive relation. For a Newtonian fluid, this can be written as

rq = 2uSq- Pqj (3)

Here, u is the kinematic viscosity, 8q is the strain rate tensor, and Rq is the Reynolds

stresses. The strain rate tensor is defined by

1 aui _) (4)

Various levels of closure models for P_j are possible (ref. 15). If turbulence is simulated by

an eddy viscosity model, the viscous stress tensor can be replaced by the following form:

nj = 2vrSq (5)

where v'r is the effective total viscosity. Therefore, the present formulation allows vari-

able viscosity which can be represented by a time-dependent constitutive relation. Non-

Newtonian effects of blood can be included in a simple manner by an equation of state for

ur. In a more sophisticated approach, a currently used differential model (ref. 5) for "rq ;

namely,
D

_-_rq = f(t, p, 8_j, material ) (6)

can be incorporated in the analysis. This equation can be solved in a decoupled mode from

the governing equations by lagging the time advancement by one step. In the remainder of

this paper, our discussion will be limited to an algebraic expression as in Equation (5).

The geometric variation for blood flow computations is diverse and naturally the com-

putational approach has to take this into account. To perform calculations on

three-dimensional, arbitrarily shaped geometries, the following generalized independent

variables are introduced which transform the physical coordinates into general curvilinear

coordinates

'r=t

_i = _(X,y,z,t) (7)

Applying the transformation to the governing equations yields a generalized form of the

incompressible Navier-Stokes equations cast in curvilinear coordinates. Various simplifi-

cations can be made on these equations depending on the geometry and the boundary-layer

thickness. For instance, in many problems of external aerodynamics where the viscous



region is confinedto a thin region, theNavier-Stokesequationsareoften simplified by a
thin-layerapproximationor by aparabolicform. For internalflows,suchasthebloodflow
in thehumanbody,viscouseffectsareimportantin theentireflow field. Therefore,theset
of governingequationsneedto besolvedin their completeform.

SOLUTION METtlODS

A major problem in solving the incompressible Navier-Stokes equations comes from

the lack of a pressure term in the continuity equation. In realistic three-dimensional appli-

cations, satisfying continuity in a reasonable amount of computing time becomes a primary

issue. Various methods of resolving this problem have been developed (ref. 15). However,

the present discussion is limited to a primitive variable formulation in generalized curvi-

linear coordinates. In this section, three flow solvers recently developed by the authors are

summarized to suggest a way of extending this type of computational tool to blood flow

simulations. Derivation of equations and algorithmic details can be found in full-length

versions of the authors' publications (refs. 11-14). Other numerical methods developed

in the past for simulating viscous incompressible flows can be found in the literature (see

(ref. 15) for a review).

Pseudocompressibility method

Recent advances in the state of the art in CFD have been made in conjunction with com-

pressible flow computations. Therefore, it is of significant interest to be able to use some

of these compressible flow algorithms. To do this, the artificial compressibility method

(ref. 16) can be used. In this formulation, the continuity equation is modified by adding a

time derivative of the pressure term resulting in

cgui1 tgp + 0 (8)
# at

where/5 is a pseudocompressibility coefficient. Together with the unsteady momentum

equations, this forms a hyperbolic-parabolic type of time-dependent system of equations.

This method was originally intended for the steady-state computation of incompressible

flow (refs. 11 and 12). However, by introducing a pseudo-time iteration, this can be made

time-accurate (refs. 14 and 17).

By constructing a pseudocompressible form of the governing equations,

fast, implicit schemes developed for compressible flows, such as the

approximate-factorization scheme (ref. 18), can be implemented. Based on this approach,
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a computer code (INS3D (ref. 11)) has been written for obtaining steady-state solutions.

The spatial discretization uses second-order central differencing with additional numerical

dissipation terms. This code has been validated and applied to numerous three-dimensional

problems (refs. 11, 12, 19, and 20).

To obtain time-accurate solutions using the pseudocompressibility formulation, it is

necessary to satisfy continuity at each time step by subiteration in pseudo-time. To use

a large time step in the pseudo-time iteration, an upwind differencing scheme based on

flux-difference splitting is used combined with an implicit line relaxation scheme. This

removes the factorization error and the need for numerical dissipation terms. A second

code (INS3D-UP) based on this method has been validated and excellent results have been

obtained (tel 14).

Fractional-step method

The fractional-step method is another approach that can be used for time-dependent

computations of the incompressible Navier-Stokes equations. Here, the discretized equa-

tions are advanced in time by decoupling the solution of the momentum equation from that

of the continuity equation. The common application of this method is done in two steps.

The first step is to solve for an auxiliary velocity field using the momentum equation in

which the pressure-gradient term is approximated by its value at the previous time step.

In the second step, the pressure, which maps the auxiliary velocity onto a divergence-free

velocity field, is computed. Various other operator splittings can be adopted by treating the

momentum equation as a combination of convection, pressure, and viscous terms.

A third flow solver (INS3D-FS) based on this approach using a staggered grid has been

developed (ref. 13). The governing equations are discretized conservatively using finite

volumes. Rather than choosing the Cartesian velocity components as dependent variables,

the volume fluxes over the faces of the computational cells are used. They are equivalent

to the contravariant velocity components described in a staggered grid. This procedure,

combined with accurate and consistent approximations of the geometric quantities, satisfies

the discretized mass conservation equation. In the second step, a novel four-color scheme

is devised for solving the resulting Poisson equation for the pressure correction. Several

computational results have been compared with experiments and other numerical solutions

in reference 13.
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COMPUTATIONAL PROCEDURE

Grid generation

Commonly used grid topologies can be classified basically into three different types,

namely, O-, C- and H-grids. In blood flow applications, the blood vessels have tubular

cross sections and can branch off into several smaller tubes. The flow can go through ir-

regular passages and may encounter rapid turns and expansions as in an artificial heart

(refs. 8 and 9). Naturally, computational simulation of these flows needs to be performed

in more than one zone that are separated by geometric characteristics. For a multiple zone

calculation, geometric continity is desirable for avoiding complicated interface procedures.

Various grid generators are available in the literature.

To illustrate a possible way of generating a realistic grid, the geometry of a glass

aneurysm model, proposed by Liepsch et al. (ref. 7), is chosen. Note that, by combin-

ing the two H-grids, the grid in the cavity is continuous with the grid in the main blood

vessel. Figure l(a) shows that the grid for the physical domain and figure l(b) shows the

grid for the computational domain (generated by L. Chang: unpublished note). Here, the

circular cross sections are mapped by an H-grid. This topology is very flexible in cluster-

ing the grid points in the area of interest; however, it does so at the expense of introducing

singular points. These singularities are hidden in the corner of the solid boundary and can

easily be handled by explicit boundary conditions.

Computed examples

The three flow solvers just described have been validated by computing basic fluid dy-

namics problems (refs. 11-13). A few examples are listed in this section for demonstrating

the capability of those solvers for potential applications to blood flow problems.

Bifurcation is an important blood flow problem, since a low-speed recirculating region

and local regions of high shear stress may play an important role in the formation of atherotic

plaques and thrombi as well as releasing hemoglobin in the blood stream. As an idealization

of a branching human circulatory system, a numerical solution of a 90 ° bifurcation problem

(ref. 6) is shown in figure 2. This result is obtained using the INS3D-UP code (ref. 15). A

more realistic geometry can be modeled by a grid similar to the aneurysm shown in figure 1.
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In figure 3, the time evolutionof a two-dimensionalcavity flow is shownby time
dependentstreamfunctioncontours.Thisresultisobtainedby theINS3D-FScode(ref. 13).
This exampleillustratesthepotentialof extendingtheflow solverto ananeurysmanalysis.

As anexampleof how the present CFD capabilities are being used in real world ap-

plications, work related to the Space Shuttle main engine (SSME) flow simulation (refs. 19

and 20) is briefly discussed here. The geometric complexity of the SSME power head is

comparable to blood flow problems, such as flow in an artificial heart. In the SSME staged

combustion cycle, the fuel is partially burned at very high pressure and relatively high tem-

perature in the preburners. The resulting hot gas is used to drive the turbine and is then

discharged from the gas turbine to the annular turnaround duct with a 180 ° U-turn before it

diffuses into the fuel bowl. Flow through this assembly was simulated using INS3D code.

The flow in the U-turn is especially interesting when the flow is turbulent because the tur-

bulence structure is greatly influenced by streamline curvature. Therefore, in this case, it

is necessary to incorporate strong curvature effects in the turbulence modeling. For the

present paper, a length scale determined by the point of minimum vorticity is incorporated

into an extended Prandtl-Karmann mixing-length theory. The combination of these auto-

matically account for the curvature effect. Full details of this model are given in reference

(ref. 21). In figure 4(a), the grid in the 180 ° turn region is shown. In figures 4(b)-4(i), com-

puted velocity profiles using this algebraic turbulence model at Re=10 s are compared with

experiment (ref. 22). Considering the difficulties associated with curvature effect modeling,

the results are very promising.

Postprocessing

Three-dimensional simulation of realistic flow produces an avalanche of data. There-

fore, fast postprocessing tools are necessity for analyzing the data. Various

three-dimensional graphic softwares have been developed in parallel with supercomputers.

Graphics work can be performed on a work station independently or interactively with the

main supercomputer. This provides an invaluable means in interpreting and understanding

the results of the computation. Further details of the recent development in postprocessing

can be found in the references cited (refs. 23 and 24).

CONCLUDING REMARKS

This paper presents a potential procedure of applying incompressible Navier-Stokes

flow-solvers to blood flow problems. Computed examples on several generic problems
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relevanttobloodflow arepresented.Forproblemsrelatedtolargebloodvessels,thepresent
Newtonianformulation is anacceptableapproximationfor gaining insight into the flow
physicsinvolved. However,for a morecompleteandaccurateanalysis,it will be required
to model thenon-Newtonianeffectaswell asthetransitionandturbulenceeffects.Despite
the limitation onphysicalmodels,thesuccessfulapplicationof theincompressibleNavier-
Stokessolversto the SSME analysisand redesign,providesan exampleof presentCFD
capabilities.Thesecapabilitiescanbeintegratedinto thebloodflow analysis,sincesimilar
approximationsto thephysicscanbemadein thatcase.
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Fig. 1 Model geometry of an aneurysm: a) physical domain,

b) computational domain

b)

Fig. 2 Numerical solution of 90 ° bifurcation (Re=496, vertical flow = 44 % of total flow):

a) velocity vectors, b) stream function contours.
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